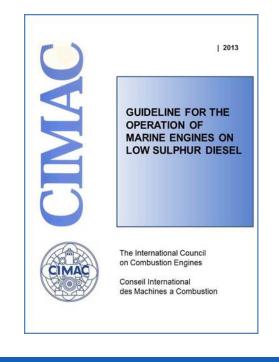


WG7 ,Fuels' Status report,

Council meeting,

1

The world's leading designer of Two Stroke Diesel Engines


Copenhagen, Denmark.

WG7 ,Fuels'

- 35 members
 - 15 on waiting list
- Represented stakeholders
 - Refiners, Suppliers, OEMs, Ship Operators, Fuel Testing Labs, Classification Societies and others
- Co-operation with
 - All CIMAC WGs in case of common topics
 - ISO8217 fuels group (very close relationship)
- Latest Publications
 - Guideline providing answers to FAQ from ISO 8217:2017 (Mar 2017)
 - Guideline on the Interpretation of Marine Fuel Analysis Test Results (Feb 2016)
 - Guideline on Filter Treatment of Residual Fuel oil (Dec 2015)
 - Position paper: New 0.10% sulphur marine (ECA) fuels (June 2015)
 - Guideline: Cold flow properties of marine fuel oils (Jan 2015)

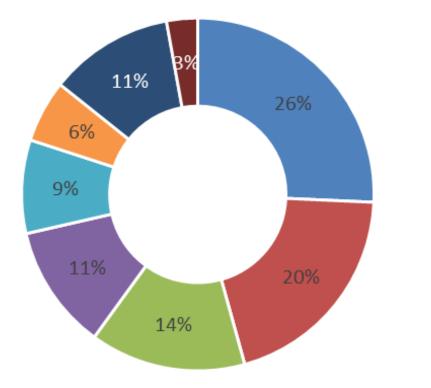
WG7 ,Fuels'

Recent and upcoming meetings

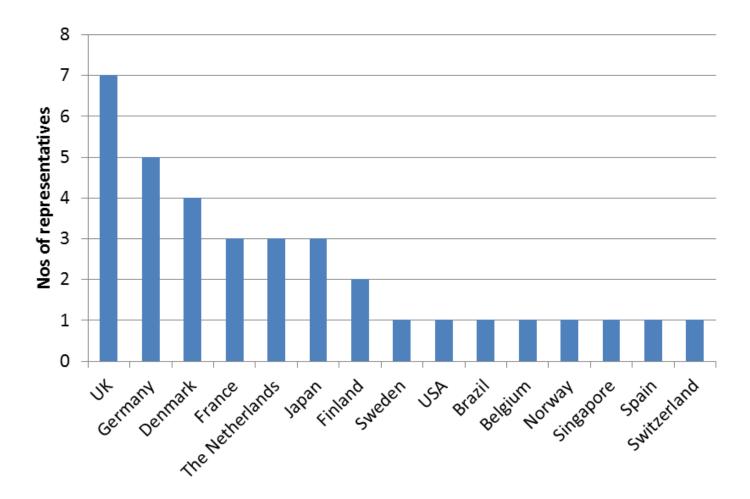
- No 76: Apr 2017, Switzerland
- No 77: Sep 2017, Frankfurt
- No 78: Apr 2018, Copenhagen
- No 79: Sep 2018, Philadelphia, US
- No 80: Mar 2019, Oslo or Lisbon

Current activities, subgroups

High priority SGs


- SG 1-1 CFR (centrifuges and efficiency)
- SG4 Guideline on stability/compatibility
- SG5 LNG quality
- SG6 Ignition/Combustion, 2020 fuels
- SG9 "How to order and use 2020 fuels"

Low priority SGs								
SG 1-2	Separators							
SG 3 pH /	Corrositivity							
SG 7 Emu	lsion fuels							
SG10 Nich	e fuels							


Representation in WG7 by sector

- Refiner / Supplier / Trader
- OEM, Engines
- Fuel Testing Lab
- OEM, Other
- Ship Operator
- Other
- Fuel Additive Supplier
- Classification Society

Representation in WG7 by country

CIMAC WG7 Fuels and ISO 8217 committee

CIMAC WG7 Fuels	ISO 8217
Recommendation	Standard
Short lead time	Long lead time
High flexibility	Limited flexibility

- Participant overlap between groups
- WG7 and ISO 8217 support each other
- Rational use of resources avoid duplication of work

How is CIMAC WG7, Fuels' preparing for 2020?

Definitions:

- Ultra low sulphur fuel oil (ULSFO), max 0.10% S
- Very low sulphur fuel oil (VLSFO), max 0.50% S
- Low sulphur fuel oil (LSFO), max 1.00% S
- High sulphur fuel oil (HSFO), above 1.00% S
- LS MGO max 0.10% S (no heating required)
- HS MGO above 0.10% S (no heating required)

How is CIMAC WG7, Fuels' preparing for 2020?

- Close cooperation with ISO 8217
- Assist ISO 8217 taking on some of the investigative work
- Prepare guidelines related to 2020 fuels. Currently two on the agenda:
 - Guideline: Stability / Compatibility
 - Guideline: How to order and use 2020 fuels?
- Investigate if there are other onboard and/or lab measurements available/needed to ensure safe operation on the VLSFO
- Represented in IMO "Joint Industry Guidance for 0.50%S Marine Fuel"

MAN B&W 2-stroke Engines

MAN Energy Solutions supports all

MAN B&W Multifuel Engines

New fuels - emissions

	NO _x	SO _x	PM	CO ₂
LNG	20-30%	90-99%	90%	24%
LPG	10-15%	90-100%	90%	13-18%
Methanol	30-50%	90-97%	90%	15%
Ethane	30-50%	90-97%	90%	15%

- Compared with Tier II engines on HFO
- Based on estimates
- Tier III can be met with EGR, PIFIW or SCR

Today - The Dual Fuel success

4 x World's first duel fuel driven ships equipped with MAN B&W engines

World's first LNG driven ocean going ship Owner: TOTE Ship type: Container ship, 3,100 Teu Capacity: Dual Fuel engine type: 8L70ME-C8.2-GI

Engine delivered in 2012

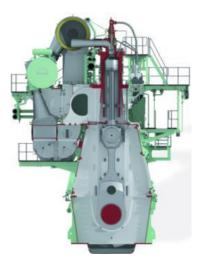
World's first ethane driven ocean going ship Owner: Hartmann Schifffahrt Ship type: LEG Carrier, 36,000 M³ Dual Fuel engine type: 7G50ME-GIE Engine delivered in 2014

World's first methanol driven ocean going ship Owner: MOL Ship type: Methanol carrier, 50,000 dwt. Dual fuel engine type: 7S50ME-B9.3-LGIM Engine delivered in 2013

World's first LPG driven ocean going ship Owner: Exmar Ship type: VLGC, 80,000 M³ Dual Fuel engine type: 6G60ME-LGIP Not yet in service

Kjeld Aabo - The Motorship propulsion and future fuels conference 2019

MAN B&W 2-stroke Engines


MAN Energy Solutions supports all

What Fuel will be used in 2020 and beyond?

Compliant fuel

MC/ME/-C engine Single Fuel: 0.10%S fuel, 0.50%S fuel

ME-GI/ME-LGI engine Dual Fuel: LNG, Ethane, LPG, MeOH

High sulphur fuel

MC/ME/-C engine 0 – 5%S fuels: HFO/MDO + Scrubber

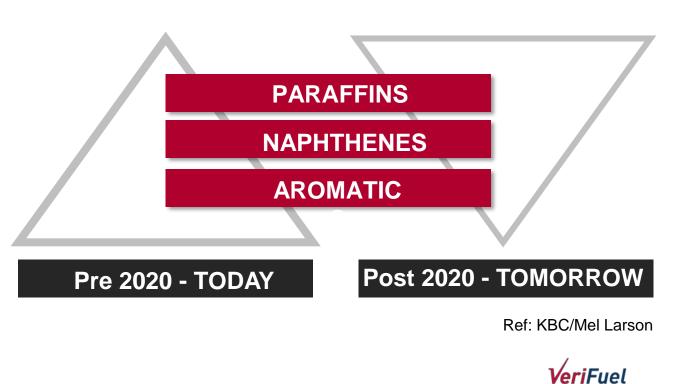
	Supplier A	Supplier B	Supplier C	Supplier D	Supplier E	Supplier F	Supplier G	Supplier H	Supplier I
Density (kg/m3 @ 15 C)	895-915	910	857	868	932	845	868	928	870-930
Viscosity (cSt @ 40 or 50 C)	40-75 (40⁰C)	<mark>65</mark> (50⁰C)	17.6 (50⁰C)	8.8	22.6 (50⁰C)	8.8	8.5 (50°C)	40C: 45-65. 50C 30-40	8-25 (50ºC)
Sulphur (% m/m)	0.1	0.095	0.08	0.05	0.1	0.03	0.09	0.1	<0.1
Pour Point (C)	15-30	20	<-12	-12	30	21	27	20-25	18-21
Flash Point (C)	>70	60	>200	72	90	>70	>70	70	60-80
Water (% v/v)	0.05	0.1	<0.2	0.004	<0.05	0.01	0.05	0.2	0.05-0.1
Acid Number (mg KOH/g)	<0.1	2.5	0.3	0.27	0.06	0.04		2.5	0.1-0.2
Al+Si (ppm m/m)	<0,3	17	<15	?	34	<1	<3	10-20	12-15
Lubricity (µm)	<320	520	-	410	-	326	-	-	-
CCAI	795-810	860	762	-	-	765	789	790-800	790-810

2020 Fuels What may / will happen in 2020?

Key parameters for 0.50% Marine Fuel Oil blending will be:

- Stability (Total Sediment)
 - Paraffinic vs Cracked blend components
- Pour Point
 - ULSFO /VLSFO close to PP limits

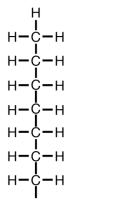
Acidity

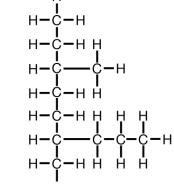

- Sweet crude sources with high AN (e.g. DOBA)

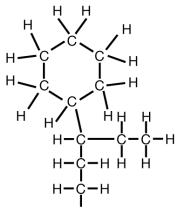
Viscosity

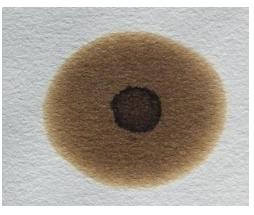
- No minimum limit in ISO 8217, Table 2

CCAI


- Larger difference between viscosity and density

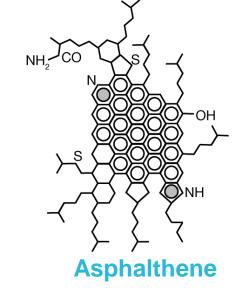



Fuel Stability and Fuel Incompatibility


Fuel components

Paraffins

Incompatible fuel blend

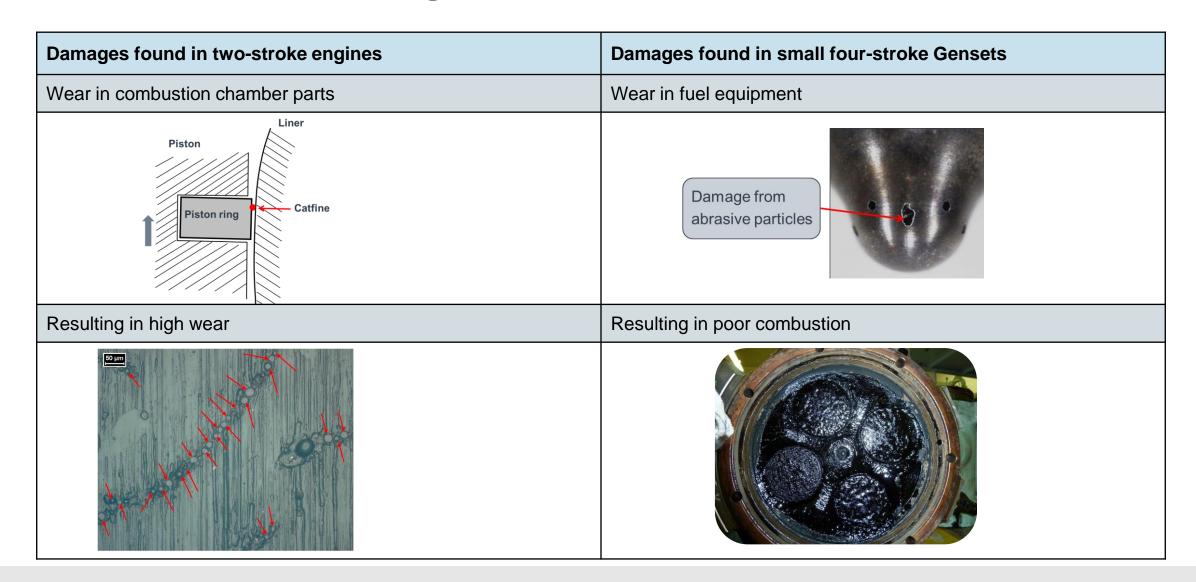

Naphtenes

Aromatics

H-Ć

н-с-н

н-с-н



MAN Energy Solutions

Compatible fuel blend

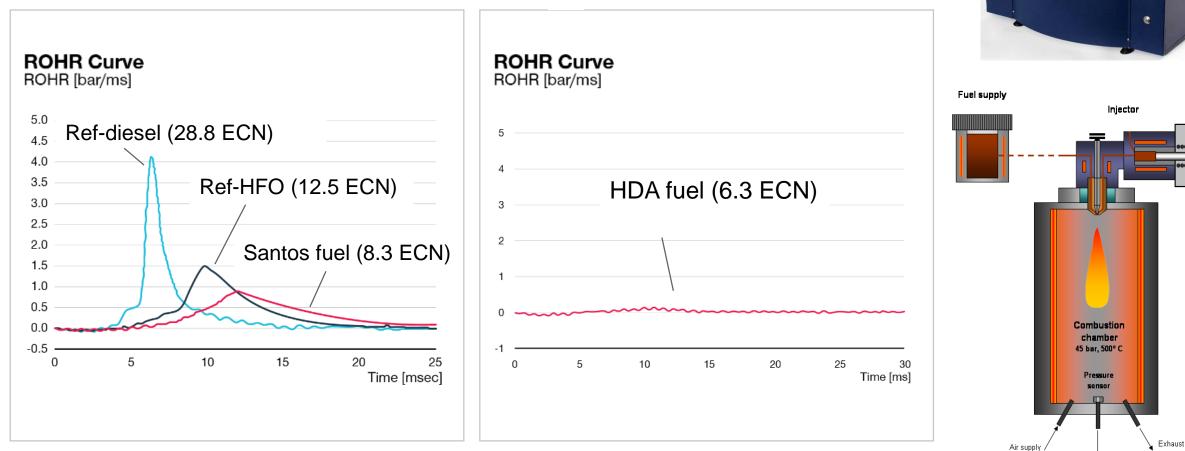
Overview of damages Found in two-stroke engines and small four-stroke Gensets

Cat fines

Cat fines cause wear in the engines

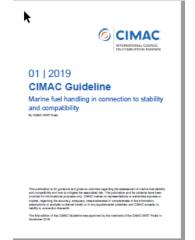
Cat fines in fuel bunker samples from 2010

2020 Fuels Cold flow properties - wax



Combustion test – Lab test


FIA test IP 541: Constant volume combustion chamber method


To computer

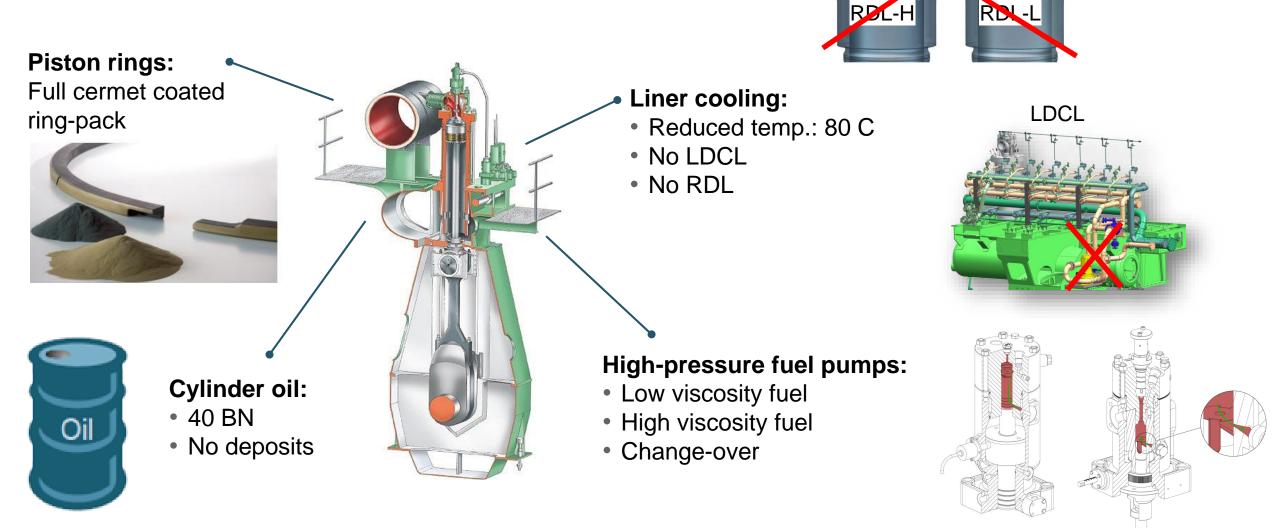
Latest Publications about the coming fuels 2020

<text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text>

CIMAC Guideline

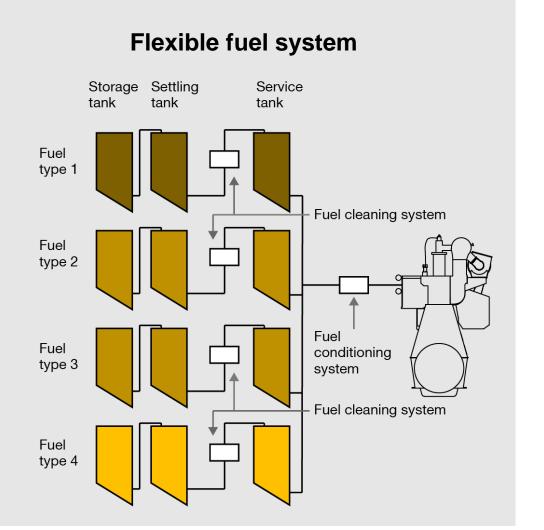
Several test methods to evaluate fuel stability exist have been highlighted in this paper, however, their applicability and accuracy varies.

Only one method (ASTM D4740) is available as providing a useful onboard screening tool for compatibility between two fuels of which one must be of a residual (RM) nature. Fuels which are actually compatible may be deemed less compatible or incompatible by the method.

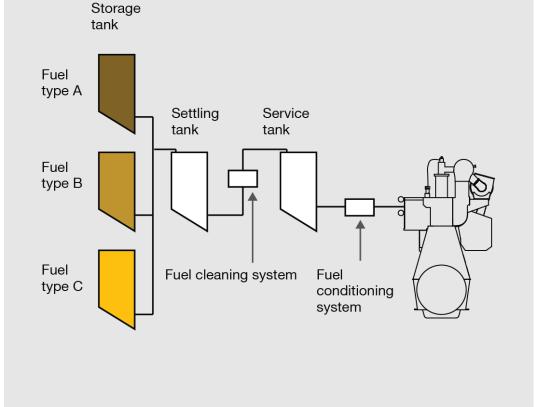

The most effective way to determine a fuel's stability or compatibility between two or more fuels, is using test methods that can only be applied in a controlled laboratory setting.

 The test method ISO 10307-2 Potential Total Sediment (TSP) is used as the definition for a stable
 Image: Comparison of the test methods: ASTM D7157, D7112 and D7060 with the prediction model offer a tool

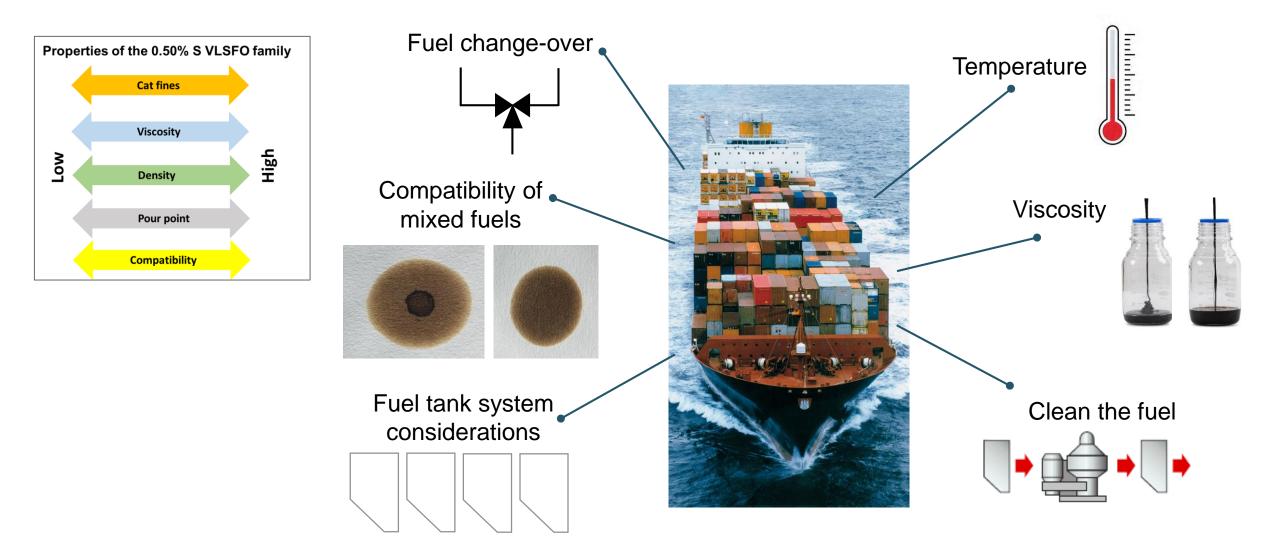
 To evaluate the degree of compatibility of fuels without the need to test the fuels mixed together.
 Image: Compatibility of fuels without the need to test the fuels mixed together.


Engine updates – for 0.50% S fuel

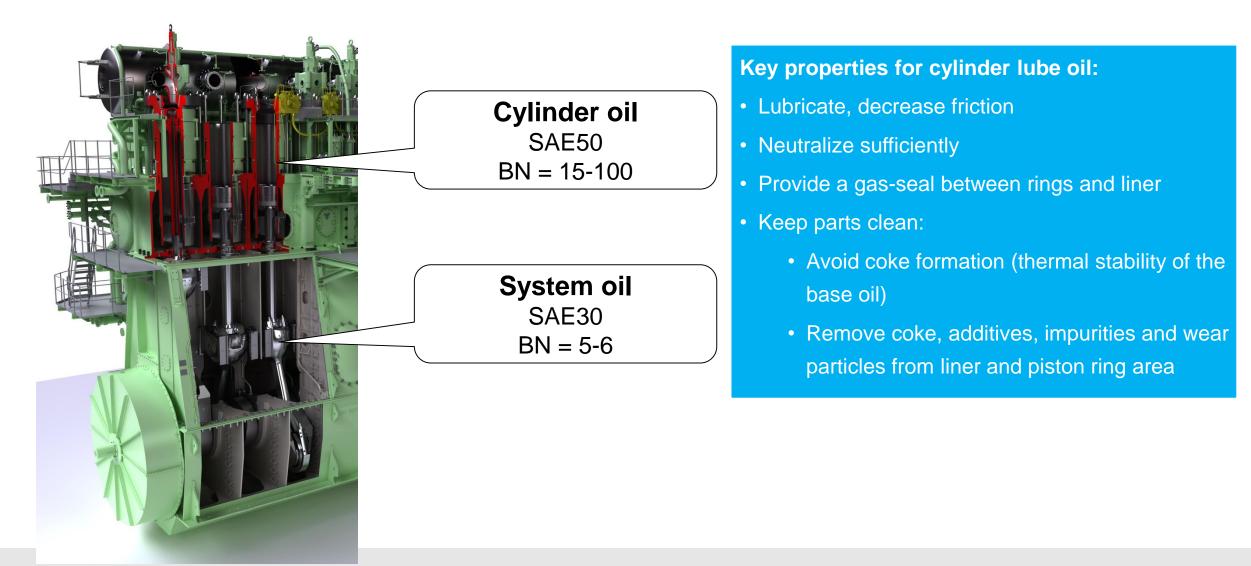
What to consider?



Fuel system – schematic examples

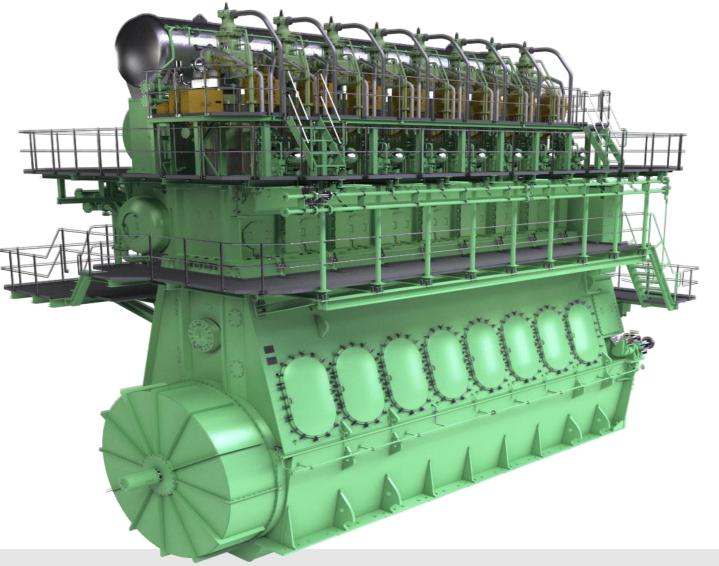


Simple fuel system


Summary: 0.50% S fuels

What to consider - for the ship?

Lube Oils

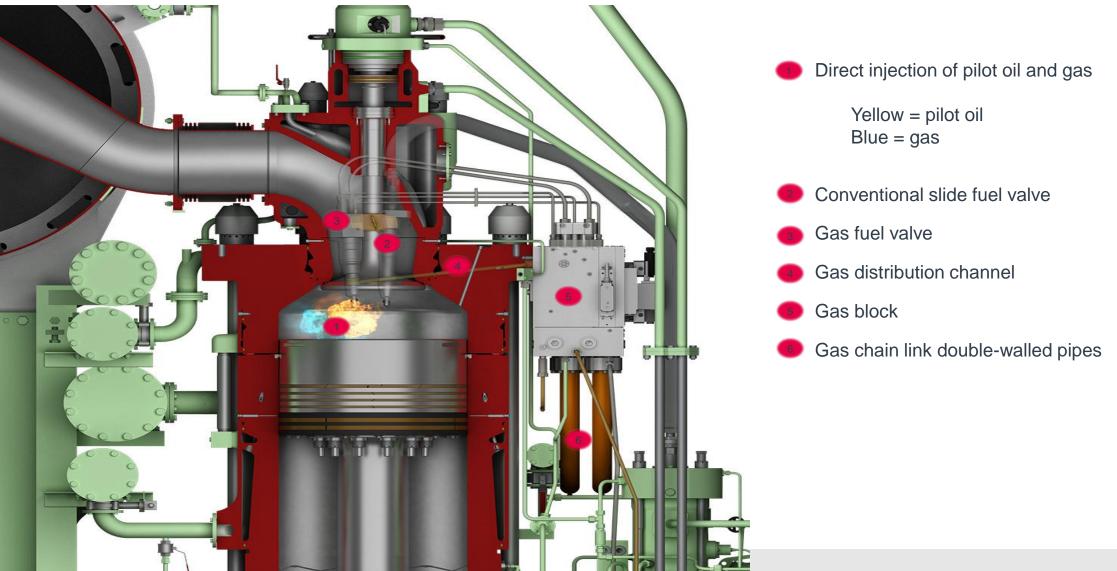

MAN B&W Multifuel Engines

New fuels - emissions

	NO _x	SO _x	PM	CO ₂
LNG	20-30%	90-99%	90%	24%
LPG	10-15%	90-100%	90%	13-18%
Methanol	30-50%	90-97%	90%	5%
Ethane	30-50%	90-97%	90%	15%

- Compared with Tier II engines on HFO
- Based on estimates
- Tier III can be met with EGR, PIFIW or SCR

ME-GI engine GI components



MAN Energy Solutions

Public

ME-GI Concept

Combustion Concept

ME-GI / ME-LGI Gas Fuel Mode

Port to port in dual fuel mode

Fuel oil only mode

Operation profile as conventional engine

Dual fuel operation mode

- No fuel slip
- No knocking problems
- Insensitive to gas fuel (methane number)
- Unchanged load response

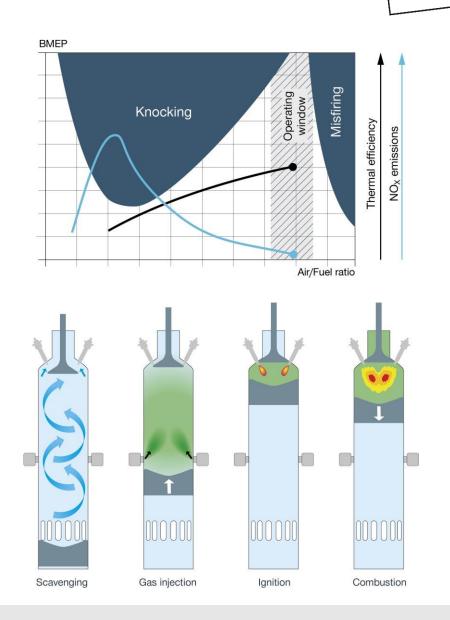
News:

- Pilot oil amount $3\% \rightarrow 1\%$ (ME-GI Mk.2)
- Load on gas \rightarrow 10% load

3338912.2013.12.10

0064

ME-GA


Pre-mixed Engine Concept

Advantages

- Low CAPEX due to low gas supply pressure (<16 bar)
- For LNGCs the BOG compressor of piston type is avoided
- Pre-mixed combustion \rightarrow Lower NO_x
- TIER III compliant in gas mode

Challenges in the development

- Narrow operating window necessary to avoid pre-ignition, knocking limits and misfire
- Reduced compression ratio, MEP and thermal efficiency
- Gas quality limitations (Methane number)
- Methane slip increased

Ammonia has better power density than Hydrogen

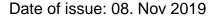
Does not have to be kept at extremely low temperatures or under high pressure to be stored

Technology	Pressure	Temperature	Density (Gje/m3)	P-to-X Efficiency	Safety
Liquid H2	Ambient	-254	4.8	68%	Explosive, Cryogenic
Pressurized H2	700	Ambient	2.8	76%	Explosive, very high pressure
CH4	Ambient	-163	11.4	56%	Explosive, Cryogenic
MeOH (CH3OH)	Ambient	Ambient	8.2	54%	Toxity, but much industrial experience
NH3	Ambient	-33	6.8	65%	Toxity, but much industrial experience

CO2 sourcing (for CH4 or MeOH) requires a carbon capture unit at the power plant, with the additional disadvantage of decreasing round trip efficiency and not capturing all CO2 produced. (ISPT, P2A, 2017, p.31)

Source: Institute for Sustainable Process Technology, Power-to-Ammonia, 2017, p. 31, Power-to-X (P-to-X) efficiency represent the amount of energy maintained when power is converted to the end-product. Losses in an engine in following use is not included. This is a SGRE Estimate based on ISPT data. The estimate has been made by assuming the X-products are converted back into power with an energy loss of 50%.

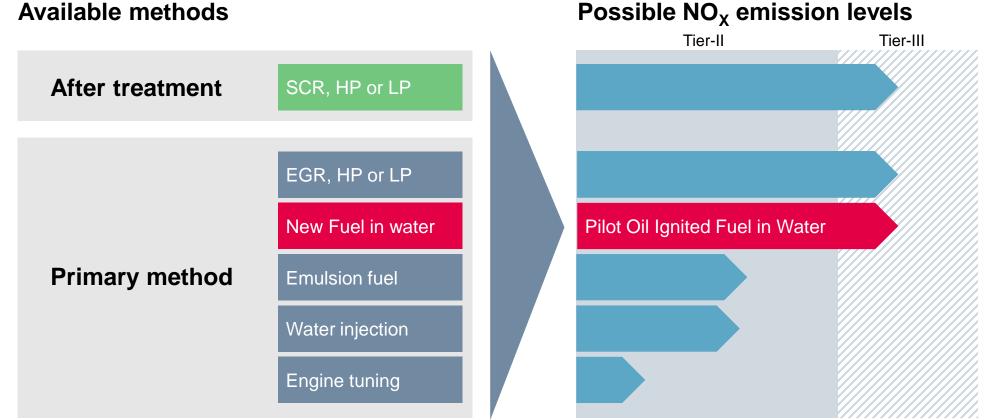
Ammonia as green fuel produced with renewable energy SIEMENS Gamesa


NH3 advantages as green fuel

- No carbon. Clean combustion without CO2 or carbon
- Can be produced 100% by electrical energy
- Can easily be reformed to H2 and N2
- Can be stored with high energy density at < 20 bar
- Low risk of fire. Relatively specific ratio of NH3 and air (15-25%) is required to sustain combustion

RENEWABLE ENERGY

Ammonia Development Project – Road Map


	2019	2019 2020			2021			2022				2023				2024				
Activity	Q3 Q	4 Q1	Q2	Q3 Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Pre-studies:																				
 Fuel delivery and ignition concept Fuel supply / return / purging concept HAZID/HAZOP on engine concept 			Spe Spe	cification c	/-/retu		-							▲ H.	AZOF	on er	ngine	concer	ot doi	ne
Development concept verification																				
 Fuel supply system design and test Fuel injection system design and test Engine design and test 						VT / LF e desig		•	ed	on ava jine te			ted							
Commercial design verification:																				
 Design of solution for 4S50ME-X test engine 4S50ME-X research engine tests 										Comp	lete 4	S50N	1E-X (engine	e tests (comp	olete
*Commercial application for each engine type:	I																			
- Engine design - Shop test - Engine delivery															▲ D	- -	1 st sl	sed for hop tes Delive	t	

NO_x Reduction Technologies

New Pilot Oil Ignited Fuel in Water, (PI FiW)

Possible NO_x emission levels

SCR: Selective Catalytic Reduction System;

EGR: Exhaust Gas Recirculation System

Combination of Methods also being pursued

Development of PI FIW Tier III engine

Conclusion on PI-FIW

Low-su	Iphur fuel design:	Methanol	Water/Fuel	
High-sulphur f	fuel: Max. 3.5%S	SCR	Water addition	Water addition
EGR On-Engine	SCR High-Pressure	Low-Pressure	Dual Fuel technology	Dual Fuel technology

Disclaimer

All data provided in this document is non-binding.

This data serves informational purposes only and is especially not guaranteed in any way.

Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.

Thank you very much

Kjeld Aabo Director New Technologies Sales and Promotion Two stroke Marine Member of WG ISO 8217 & Chairman CIMAC Fuels